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Abstract

Anomalous scattering of X-rays at a synchrotron source
can be used for the ab initio structure determination of
unknown crystal structures using only powder diffrac-
tion data. For noncentrosymmetric crystals, the phases
of structure factors can only be determined with a
remaining ambiguity, when one chemical element is used
as resonant scatterer. A corresponding additional
constraint function has been built into an enhanced
version of the program MEED, so that now all types of
information gained from an anomalous-scattering
powder diffraction experiment can be used in a
maximum-entropy calculation of the electron-density
distribution: phased re¯ections, unphased re¯ections,
intensities of groups of overlapping re¯ections, and now
also re¯ections with a remaining ambiguity in the phase.
This is important for practical use, since a lot of
information is already lost in the powder diagram
compared with single-crystal datasets and it is essential
to use all remaining information. The new constraint is
demonstrated with the structure of Cu5Zn8.

1. Introduction

1.1. Anomalous scattering and powder data

It is well known that anomalous scattering of X-rays
from a synchrotron source can be used for the ab initio
structure determination of unknown crystal structures
using only powder diffraction data (Prandl, 1990, 1994;
Limper et al., 1991; Burger et al., 1997; Burger, 1997;
Burger et al., 1998). We use the same notation as in
Burger et al. (1997), shown in Table 1. Compared with
the single-crystal MAD method (Hendrickson, 1991),
the use of powder data is hindered by the non-avoidable
overlap of the Friedel re¯ections H and ÿH in a single
powder pattern line, and also due to other exact coin-
cidences or severe overlap of symmetrically non-
equivalent re¯ections.

Nevertheless, it has been shown that from at least two
powder patterns (one with the wavelength near-edge
and one far-edge of an absorption edge of a chemical
element contained in the sample) difference and partial
Patterson densities can be calculated that are much

easier to interpret than the usual Patterson density.
These can be used, for example, to locate the resonant
scatterer atoms (r.s.), so that their substructure is
solved. With this knowledge, their contribution
F�

0 � jF�0 j exp�i	�� to the re¯ections may be calculated.
In a second step of the calculation, phases � of

structure factors F � jFj exp�i�� � A� iB can be
calculated for the unique re¯ections in the powder
pattern, but not for re¯ections overlapping with other
non-equivalent re¯ections in one powder line. The
basis for the calculations is equation (1): from the
integrated powder-line intensity, only the average
intensity �I��� of the Friedel pair can be determined,

�I��� � 1
2 jF�H�j2 � jF�ÿH�j2� �
� jF0j2 � 2e����jF�

0 jjF0j cos��ÿ	��
� ja����j2jF�

0 j2: �1�

In the case of a centrosymmetric crystal, and if the origin
of the unit cell is chosen to coincide with the center of
inversion (which is always possible), only signs have to
be determined, cos � � �1, cos 	� � �1, and two
measurements of �I��� near- and far-edge are suf®cient to
obtain the phase �. In the noncentrosymmetric case,
however, a single r.s. type with its absorption edge is not
suf®cient to determine the phase uniquely, since only the
information cos��ÿ	�� � cos � is obtained (	� is
supposed to be known at this stage), and with it the
information on jsin�j � �1ÿ cos2 ��1=2, but not the
information on the sign of the sine term,
sin � � �jsin�j. In this way, there remains an ambi-
guity in the phase determination for noncentrosym-
metric crystals.

Prandl (1990) suggested the use of a second type of
r.s. to overcome this ambiguity, but this seems to be
dif®cult for practical reasons. Thus, phase determination
from powder data is severely hindered and a Fourier
calculation of the electron density is not possible, since
only half of the phase information is available even for
the unique re¯ections in the powder diagram, and no
phase information for the non-unique ones or the
re¯ections, where the r.s. atoms do not contribute
signi®cantly, jF�

0 j � jF0j. A solution of this problem is
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now presented using a new constraint type in the
maximum-entropy algorithm.

1.2. Maximum-entropy method (MEM)

The nonlinear MEM, which has its roots in probability
and information theory, has been applied to many ®elds
of crystallography (for a current review, see Gilmore,
1996). This includes: an attempt to see non-nuclear
density maxima with precise silicon data directly (Sakata
& Sato, 1990; Takata & Sakata, 1996); application to
powder data sets with overlapping re¯ections (Sakata et
al., 1990); application to neutron data, where negative
scattering densities can occur (Takata et al., 1994);
disordered structures (Papoular et al., 1992); polarized
neutron scattering (Papoular et al., 1995; Schleger et al.,
1997); extraction of strictly positive integrated inten-
sities from strongly overlapping powder re¯ections
(Sivia & David, 1994); quasicrystals (Haibach & Steurer,
1996); single-crystal Laue data sets (Bourenkov et al.,
1996); phase determination by statistical (direct)
methods (Bricogne & Gilmore, 1990).

Although the current MEM algorithms are far from
being perfect [see e.g. Iversen et al. (1997) and refer-
ences therein], it has been shown to be very well suited
for the calculation of electron densities using incomplete
powder data sets as described above, since it can use all
the different information obtained in one calculation
(Burger et al., 1997; Burger, 1997).

From the anomalous-scattering data sets, four sets of
re¯ections are obtained, which can now all be used in
the MEM calculation (listed in order of decreasing
information content):

(i) one set of signed re¯ections (with F0 known,
`F-constraint');

(ii) a set of ambiguous phase information as described
above, when the crystal is noncentrosymmetric and
cos � is known, but only jsin �j without its correct sign
(the new `A-constraint');

(iii) a set of unsigned unique re¯ections (with jF0j
known, `I-constraint');

(iv) a set of groups of overlapping re¯ections (with
only an intensity sum known for each group,
`G-constraint').

An illustration of the different constraint types is shown
in Fig. 1. Using a simple Fourier transformation to
calculate the electron density, one can use only the ®rst
set of phased re¯ections, but has to omit the other three
sets. The non-avoidable gaps in the ®rst set often lead to
severe disturbances of the density calculated. With a
MEM calculation instead, one can use all available
information, i.e. all four sets, and can reconstruct a
strictly positive MEM density, ��r� � 0, incorporating in
this way additional physical pre-knowledge. A MEM
density is thus in¯uenced less by the systematic gaps in
the set of phased re¯ections. For our MEM calculations,
we used an enhanced version (Burger, 1997) of the
program MEED (Kumazawa et al., 1993). The original
version is available at http://www.mcr.nuap.nagoya-u.
ac.jp/mem, while the TuÈ bingen version² is available at
http://www.uni-tuebingen.de/uni/pki. A detailed des-
cription of the TuÈ bingen version is given in Burger
(1998).

1.2.1. Iterative MEM algorithm. The electron density �
is used in a normalized and discretized (pixel) form, and
is set equivalent to a probability density, which is
calculated by the MEM. The measurement information
is introduced through a constraint function C with the
`pseudo-Lagrange parameter' �. The basic equation is

�l � �l exp ÿ�@C=@�l

� �
; �2�

used iteratively (Collins, 1982; Sakata & Sato, 1990;
Sakata et al., 1990). In one cycle of the iteration, this
equation is used for every pixel l of the density: the `old'
density �l�n� of cycle n is used as `prior' (starting)
density �l , the constraint function C���n�;Fobs; ��F�� is
calculated using the `old' density, and a new `updated'
density �l�n� 1� results:

�l�n� 1� � �l�n� exp ÿ�@C���n�; Fobs; ��F��=@�l

� �
:

�3�

Table 1. List of symbols used in the text

r.s. Resonantly scattering atom
f ; f 0; f 00 Atomic form factor and resonance corrections including an

isotropic temperature factor
f� � f0� � f 0� � if 00� Form factor for the r.s.
F0�H� � F0 � jF0j exp�i�� Total structure factor of re¯ection H under consideration,

without resonance contributions
F�

0 �H� � F�
0 � jF�

0 j exp�i	�� Structure factor of the r.s. alone
�I��� � �jF�H�j2 � jF�ÿH�j2�=2 Mean intensity of a Friedel pair of re¯ections H and ÿH
a���� � �f 0� � if 00� �=f0�

e���� � f 0�=f0�

Resonance contributions to the form factor in units of f �0 .

Ii, f�i, ei and a2
i Shorthand symbols for I��i�, f���i�, e���i� and ja���i�j2,

respectively.

² Changes include e.g. modularization of the source code, addition of a
program for a corresponding Fourier calculation, improved MEM-
constraint divergence and `lambda' handling, and limitation of the
maximum reduction of the constraint function value to 10% maximum,
since the original derivation of the MEM algorithm of Collins (1982) is
based on small changes in �.
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The algorithm with its approximations and simpli®ca-
tions is further discussed in Kumazawa et al. (1995),
Takata & Sakata (1996), and in Burger (1997).

1.2.2. MEM constraints.
(a) F-constraints: structure factors F � A� iB are

completely known. In the case of known phases [with
� � ��jFj�, assuming that the structure-factor phases
are known from a model calculation and taken to be
error free], the constraint function used in the MEED
program is

CF � �1=NF�
Preflections

j

jFc
j ÿ Fo

j j2=�2
j : �4�

(b) I-constraints: known intensities jFj2. In the case of
known intensities [with � � ��jFj� � ��I�=�2I1=2�], the
constraint function is

CI � �1=NI�
Preflections

j

jjFc
j j ÿ jFo

j jj2=�2
j : �5�

In the MEED program, this type of constraint is not
speci®cally implemented. Instead, one uses the
G-constraint speci®ed below, in the special case of only
one re¯ection per group. Of course, one could also use a
constraint function with intensities jFj2 instead of
amplitudes jFj, but the latter form is better suited for
combination with other constraints, as described below.

(c) G-constraints: known intensity sum of a group of
re¯ections, which overlap in a single powder diagram
line. In this case, the constraint function used is (Sakata
et al., 1990)

CG � �1=NG�
Pgroups

j

�Gc
j ÿGo

j �2=�2
j ; �6�

with � � ��jGj� and the `mean structure-factor
modulus' Gj (mi multiplicity of re¯ection i) is

Gj �
Preflections

i

mijFij2
.P

i

mi

� �1=2

: �7�

(d) New A-constraints: `partly phased' re¯ections,
where jFj, cos(�ÿ	�) and 	� are known. This
constraint type is specially designed for the case of

anomalous-scattering information gained from X-ray
powder patterns at several wavelengths, as described
above.

In this type of experiment, 	� is known for a speci®c
re¯ection, and from the measured intensity difference at
two wavelengths the quantity A0 may be determined
completely, but for B0 only its modulus may be found:

A0 � jFj cos��ÿ	�� � A cos 	� � B sin 	�

jB0j � jFjjsin��ÿ	��j � jÿ A sin 	� � B cos 	�j:
The constraint function may then be implemented as

CA � �1=NA�
Preflections

j

��A0cj ÿ A0oj �2=�2
A0 j

� �jB0cj j ÿ jB0oj j�2=�2
B0 j
�
: �8�

In the special case of the resonant atom positioned at
the coordinate origin, all 	� are zero,

CA0 � �1=NA�
Preflections

j

��Ac
j ÿ Ao

j �2=�2
Aj

� �jBc
j j ÿ jBo

j j�2=�2
Bj

�
: �9�

The equations for the derivatives of the different
constraint functions can be found in Appendix A.

1.2.3. Combination of several constraints. Here a very
simple method is used, where the different constraint
sums are combined and used together with only one
`Lagrange factor' �,

�l�n� 1� � �l�n� exp ÿ� @CF

@�l

� @CI

@�l

� @CG

@�l

� @CA

@�l

� �� �
:

�10�
In theory, however, one should include each constraint i
(to be precise: each measurement and pre-knowledge)
with a separate parameter �i in the algorithm (Sato,
1992), but in the current MEED program the simpli®ed
approach described above is used instead. Normal-
ization of the density is not implemented in the form of
an additional constraint function, but is performed after
each new cycle in the iteration.

Fig. 1. An illustration of the different constraint types obtained in an anomalous-scattering powder diffraction experiment.
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1.2.4. Further remarks. Usually, a ¯at starting density
is chosen but a non-uniform one could be used in the
case of some atom positions already known. One should
then be careful not to bias the density too much in the
direction of the already known substructure (Papoular
& Cox, 1995).

Additional constraints could (and should) also be
built into the algorithm to include more knowledge into
the calculation, e.g. ensure the smoothness of the density
maps or a correct nearly Gaussian distribution of the
observed around the calculated structure factors
[problems of this kind have been reported by Jauch &
Palmer (1993); some attempts to overcome this dif®culty
are discussed by de Vries et al. (1994); Yamamoto et al.

(1996); Iversen et al. (1997)]. The constraint functions
presented above are in a certain way `weak constraints',
since only sums over all re¯ections are used [for a
mathematical treatment, see Wilkins et al. (1983); Sato
(1992)].

2. Application to the example Cu5Zn8

We use published data of this structure with the
measured jFj to simulate an anomalous-scattering
experiment using the Cu atoms as resonant scatterers.
We proceed gradually from the single crystal to the
powder case: along this way much information is lost.

Fig. 2. Three sections through the electron densities of Cu5Zn8 calculated with the MEM and the Fourier method (contour line interval: 20 e AÊ ÿ2

for MEM, 10 e AÊ ÿ2 for Fourier maps). The published list of measured structure factors was used, i.e. all 70 re¯ections were used as
F-constraints with F � jFj exp�i�� completely known. The Cu2 peaks appear weaker in the MEM-density maps, since the Cu2 position is z � 0
and thus not exactly in the plane shown.

Table 2. Atom positions in Cu5Zn8 clusters

Name Atom Site Coordinates Parameters

`Inner tetrahedron' (IT) Zn1 8(c) (xxx) x = 0.11
`Cubo-octahedron' (CO) Zn2 24(g) (xxz) x = 0.313, z = 0.004
`Outer tetrahedron' (OT) Cu1 8(c) (xxx) x = ÿ0.172
`Octahedron' (OH) Cu2 12(e) (x00) x = 0.356
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Since the structure is noncentrosymmetric, we obtain all
types of constraints discussed above. A study of this
kind, but with purely synthetic data, can be found in
Burger (1997).

2.1. Cu5Zn8 model structure

The structure of -brass Cu5Zn8 is cubic, space group
I �43m, with four formula units in the cell and lattice
parameter a � 8:878�4� AÊ . The two kinds of atoms are
located on four different positions in clusters of 26
atoms (Brandon et al., 1974). These clusters can be
described as nested structures (Table 2).

The ®rst 70 low-order re¯ections (out of 158)
published by Brandon et al. (1974) are used (given are
measured jFj and calculated �; sin �max=� � 0:574 AÊ ÿ1).
The re¯ections 002, 022, 017, 057, 077 are missing in this
range. With this data set, a MEM and also a Fourier
calculation of the electron density was performed. Since
for the MEM calculation the error data ��jFj� are
explicitly needed, which are not available from the
published data set, we arbitrarily chose an error model
of ��jFj� � 0:01jFj for the F- and I-constraints, ��G� �

0:01G for the G-constraints and �A � 0:01 max�jA0j;jB0j�
for the A-constraints. Some characteristic planes in the
unit cell are shown in Fig. 2. The MEM density maps
show less noise and higher peak-to-background ratio,
but also an `unphysical' sharp peak pro®le of the
stronger peaks, which seems to be inherent in the
current algorithm. A remedy would be the use of more
high-order re¯ections or the addition of a constraint for
smoothness and maximum peak height. The Fourier
density shows a high noise level and regions of negative
density, which is mainly a consequence of the missing
high-order re¯ections. The missing re¯ections 002 etc. in
the selected angular range would affect the Fourier
densities only weakly since the intensities are usually
quite low. For a MEM calculation instead, they would be
important constraints ± if the intensities were zero, the
re¯ections could be used as F-constraints.

2.2. Simulations with the different constraint types

Now, with the published structural model we calculate
partial structure factors F�

0 of the copper substructure
(Cu1 and Cu2 atoms), assuming that their positions have

Fig. 3. Result of a MEM calculation simulating the single-crystal case of the new A-constraints (compare with Fig. 2). Only one strong re¯ection
(114) was used as the F-constraint, ®rst with the correct sign (a) and in a second calculation with the wrong sign (b). The remaining 69
re¯ections were used as A-constraints, i.e. with ambiguity in their phase (1 F-constraint, 69 A-constraints).
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been found from difference or partial Patterson maps as
described in Burger et al. (1997). We have intentionally
set the isotropic temperature parameter too large, with
Biso � 1:00 AÊ 2 instead of 0.88 and 0.71 AÊ 2 as published
for the two Wyckoff positions of Cu. For this model
calculation, we use the program SIMREF of our insti-
tute (Maichle et al., 1988), which is available in a new
version 2.5 from http://www.uni-tuebingen.de/uni/pki.

We then take the published values of the jFj as
approximate values of the dispersion-free jF0j, and the
published phase angles as the `true' phase angles �,
although the authors give a rather high R value
R � fP jjFobsj ÿ jFcalcjjg=f

P jFobsjg of 6.1% and
although the measurement is not completely free of
dispersive effects.

With the published values of jFj and � and the
calculated 	��Cu�, the values of the A-constraint data
A0 � jFj cos � � jFj cos��ÿ	�� and jB0j � jFj jsin �j
were calculated, which would have been measured in an
anomalous-scattering experiment using the Cu-edge (at
least two measurements: one near but below the edge,
with �>�edge, and one far-edge). In such an experiment,
no Bijvoet differences I�H� ÿ I�ÿH� would be obtained,
but only dispersive differences IH��1� ÿ IH��2�. Calcu-
lations were performed on a small workstation
(DECstation 5000=120) and took several minutes of
calculation time, with a resolution of 32 pixels along the
unit-cell edge chosen.

2.2.1. Single-crystal A-constraint case. In a ®rst simu-
lation, only the A-constraint information of the 70
re¯ections was used. The re¯ection 114 with signi®cant
intensity and jB0j was taken as the F-constraint, selecting
one of the two possibilities for the sign of B0 � �jB0j.
The other 69 re¯ections were used as A-constraints. The
second possibility for B0 was then used in a second MEM
calculation (Fig. 3). A comparison with the model (Fig.
2) shows very good agreement, with weak `false peaks'
showing up in the case of the wrong sign for B0 selected.
The calculation with the `correct' sign converged in 93
cycles of calculation to an R value of 15.9%, while the
`false' sign calculation converged more slowly and to a
larger R value, R � 24:3% after 177 cycles.

It can be seen that the correct density is obtained,
although in principle 269 solutions exist, obtained from
69 possible ambiguous choices of the signs of B0, which
would ®t the data given. This surprisingly large number
is however signi®cantly reduced, since it is clear that, for
re¯ections with relatively small jB0j values or for very
weak re¯ections, it is usually not important which sign is
chosen. That a MEM calculation produces a solution
using only one re¯ection with the correct structure
factor indicates the large amount of information
contained in the A-constraints, and also the nonlinear
character of the algorithm: in an ambiguous situation, a
small tendency towards a certain direction is enlarged
nonlinearly like a snowball rolling down from the top of
a mountain, after being pushed a little out of its unstable

position at the top. However, to stay in this picture, there
is no guarantee that the snowball always takes the right
direction when it rolls faster and faster down the slope.
MEM solutions with ambiguous constraints therefore
have to be treated cautiously, e.g. looking at the solution
with ªa chemist's eyesº. However, this is still a great step
forward, since a Fourier calculation with this informa-
tion is simply not possible.

If the substructure of the r.s. atoms were of higher
symmetry than the total structure, it would be possible
to obtain two different solutions. This was the case with
the structure of Fe2Ca3Ge3O12 (Burger et al., 1997) using
the absorption edge of the Fe atoms. Also, if for example
the r.s. structure was centrosymmetric and the whole
crystal not, one could obtain a second solution with
simply all signs of the imaginary parts B0 � B of
F � A� iB inverted, and would get an inverted density,
�inv�r� � �true�ÿr�. In our case, the general orientation
of the solution is given, since one has pre-selected the
orientation of the r.s. substructure.²

2.2.2. The single-crystal A-constraint case using only
`secure' A-constraints. In a second, more realistic,
simulation, we take away all re¯ections with only a weak
contribution of the r.s. from the A-constraint list, using
the ad hoc criterion jF�

0 j2 � �1=5�jFj2. These re¯ections
are now used with jFj only as (weaker) I-constraints.
Thus, 46 A-constraints remain and 23 I-constraints are
added. The MEM density calculated (with the correct
structure factor of 114) is shown in Fig. 4. It can be seen
that the loss of information results in disturbances of the
peak shape, while the general features of the density
remain the same and all atoms can be located. However,
many more cycles were needed to reach a result: the
calculations with the correct and the incorrect signs of B0

were stopped after 1200 cycles when the calculated R
value improved only very slowly. And although the
resulting density looks almost the same, the density
starting from the `false' sign converged to R � 16:1%,
while the correct sign solution had R � 18:9% ®nally,
and so a slightly poorer R value.

We also tried to use a weak re¯ection (112) as the
F-constraint, using the correct sign of B0 (Fig. 5), but
here no acceptable solution was found.

2.2.3. The powder case with overlapping re¯ections. A
further signi®cant loss of information occurs, since many
re¯ections coincide in a single powder line owing to the
cubic symmetry: in the high-angle region, almost no
unique re¯ections can be found, and up to four members
are combined into a group. For each group, only the
intensity sum can be measured, resulting in one
G-constraint. However, this information is still impor-
tant, since it reduces the number of possible solutions.
Fig. 6 shows the MEM density calculated using the 224

² From Patterson, difference Patterson or partial Patterson densities
the correct orientation cannot be extracted, since these densities are
centrosymmetric.
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Fig. 5. As Fig. 4, but using a weak re¯ection (112) as F-constraint, with the correct sign selected. This calculation produces no result of suf®cient
quality.

Fig. 6. Simulation of the powder case. Re¯ections that overlap in the powder diagram were used as G-constraints, i.e. with their intensity sum
information only. The 224 re¯ection was used as the F-constraint with the correct structure factor selected. Thus, 1 F-constraint, 15
A-constraints, 9 I-constraints and 19 G-constraints are given. The result is not satisfactory (contour line intervals 10 e AÊ ÿ3 here and in the
following ®gures).

Fig. 4. As Fig. 3(a), but taking into account that some unique re¯ections have only weak contributions of the Cu atoms used as resonant scatterers,
so that the A-constraint information is not well de®ned in a real experiment, but only the I-constraint information with jFj (1 F-constraint, 46
A-constraints, and 23 I-constraints).
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re¯ection with the correct sign chosen, which is not
convincing. It is obvious that we have now reached the
limit of the algorithm, since too much information has
been lost.

However, it is easy to use another A-constraint with
its sign arbitrarily chosen, so that now two F-constraints
are used, and to calculate the MEM solutions for all four
combinations of two signs possible. Fig. 7 shows the

Fig. 7. The powder case is repeated with two A-constraint re¯ections used as F-constraints, with four calculations performed for all possible
combinations of their signs. The result is much more satisfactory than Fig. 6, and the density quality is suf®cient to ®nd the correct solution.
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results of these four calculations, using the re¯ections
222 and 123 as F-constraints. The R values after 1200
cycles of calculation are 21.1, 27.6, 22.5, 23.6%, respec-
tively, so that the correct sign combination gives the
lowest R value and the (from inspection) second best
density has the second lowest R value. However, this
feature cannot be guaranteed in all cases. It can be seen
that the correct solution can now be found, although the
section z � 1=32 shows a low peak-density value. In the
case of wrong solutions, splitting of peaks and changes in
the atomic peak distances may appear.

3. Summary

With the new A-constraints, the maximum-entropy
method has great advantages over the Fourier calcula-
tion of electron densities in the case of anomalous-
scattering data sets, since all kinds of information
obtained from the experiment can be combined into one
MEM calculation:

(i) one set of phased re¯ections [with
F0 � jFj exp�i�� known, `F-constraint'];

(ii) a set of ambiguous phase informations when only
cos � is known (with � � �ÿ	� known,
`A-constraint');

(iii) a set of unsigned unique re¯ections (with jF0j
known, `I-constraint');

(iv) a set of groups of overlapping re¯ections of a
powder diagram (with only the intensity sum known for
each group, `G-constraint').

In particular, the new A-constraints are essential for
the use of anomalous-scattering data from powders of
noncentrosymmetric crystals that contain only one
kind of resonantly scattering atom: in this case, the
phase ��H� � 	��H� ���H� of each structure factor
can be determined from the experiment only with a
remaining ambiguity. A Fourier calculation of the
electron density would then be impossible, whereas
the MEM calculation uses all available information to
calculate the most probable solution compatible with
the given data. The MEM program is freely available
with Fortran source code, and could be improved
further by the introduction of additional constraints
and an optimized algorithm. The new quality of the
enhanced maximum-entropy method has been clearly
demonstrated using the simple noncentrosymmetric
example structure of Cu5Zn8.

APPENDIX A

A1. Derivative @CF=@�l for the F-constraint

Fc � Ac � iBc is the calculated structure factor, Fo

the observed structure factor. For the pixel density �
with total number of (equal-sized) pixels Npix and the
total scattering power sum F�000� � Q,

Fc � QVc

Npix

Xunit cell

k

�k exp�2�iH � rk�

Ac � QVc

Npix

Xunit cell

k

�k cos�2�H � rk�

Bc � QVc

Npix

Xunit cell

k

�k sin�2�H � rk�:

�11�

If NF constraint values are given, the derivative for pixel
l is then

@CF

@�l

� �1=NF�
Xreflections

j

1

�2
j

@

@�l

�Ac
j ÿ Ao

j �2 � �Bc
j ÿ Bo

j �2
� 	

� 2QVc

NFNpix

Xreflections

j

��Ac
j ÿ Ao

j � cos�2�Hj � rl�

� �Bc
j ÿ Bo

j � sin�2�Hj � rl��=�2
j : �12�

A2. Derivative @CI=@�l for the I-constraint

This derivative is a special case of the G-constraint
derivative below, with the re¯ection treated as a group
with one member.

@CI

@�l

� 2QV

NINpix

Xreflections

j

� jFc
j j ÿ jFo

j j
�2

j jFc
j j

� Ac
j cos�2�Hj � rl� � Bc

j sin�2�Hj � rl�
� ��

: �13�

A3. Derivative @CG=@�l for the G-constraint

If NG constraint values are given, the derivative is

@CG

@�l

� �1=NG�
Xgroups

j

2

�2
j

Gc
j ÿGo

j

ÿ � @Gc
j

@�l

� �

� 2QV

NGNpix

Xgroups

j

�
Gc

j ÿGo
j

�2
j Gc

j

P
i mi

�
Xgroup j

i

mi Ac
i cos�2�Hi � rl� � Bc

i sin�2�Hi � rl�
� ��

:

�14�

A4. Derivative @CA=@�l for the new A-constraint

Using the abbreviations

sp � sin 	�; cp � cos 	�

Kjl � cos�2�Hj � rl�; Sjl � sin�2�Hj � rl�
in an analogous calculation, we obtain
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@CA

@�l

� 2QV

NANpix

Xreflections

j

(
A0cj ÿ A0oj
�2

A0 j
�cpKjl � spSjl�

� jB
0c
j j ÿ jB0oj j
jB0cj j�2

B0 j

�
Ac

j ��sp�2Kjl ÿ spcpSjl�

� Bc
j ��cp�2Sjl ÿ spcpKjl�

�)
: �15�

In the special case of all 	� � 0, i.e. the r.s. are located at
the unit-cell origin, this is equal to

@CA0

@�l

� 2QV

NANpix

Xreflections

j

� �Ac
j ÿ Ao

j � cos�2�Hj � rl�
�2

Aj

� �jB
c
j j ÿ jBo

j j� sign�Bc
j � sin�2�Hj � rl�

�2
Bj

�
: �16�

Note: in the program MEED, the constant 2QV=Npix is
omitted, thus including it in the � (lambda) parameter.
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